Strengthening the cohomological crepant resolution conjecture for Hilbert–Chow morphisms
نویسندگان
چکیده
منابع مشابه
On the Cohomological Crepant Resolution Conjecture for Weighted Projective Spaces
We investigate the Cohomological Crepant Resolution Conjecture for reduced Gorenstein weighted projective spaces. Using toric methods, we prove this conjecture in some new cases. As an intermediate step, we show that weighted projective spaces are toric Deligne-Mumford stacks. We also describe a combinatorial model for the orbifold cohomology of weighted projective spaces.
متن کاملThe Crepant Resolution Conjecture
For orbifolds admitting a crepant resolution and satisfying a hard Lefschetz condition, we formulate a conjectural equivalence between the GromovWitten theories of the orbifold and the resolution. We prove the conjecture for the equivariant Gromov-Witten theories of Sym n C2 and Hilbn C2 .
متن کاملThe Crepant Resolution Conjecture for [sym 2 P 2 ]
The crepant resolution conjecture states that the Gromov–Witten invariants of an orbifold X should be determined in a precise way by the Gromov–Witten invariants of a crepant resolution of its coarse moduli space. We compute the Gromov–Witten invariants of the stack symmetric square of P 2 and compare them with the Gromov– Witten invariants of its crepant resolution, Hilb 2 P 2 (which were comp...
متن کاملCrepant Resolution Conjecture in All Genera for Type a Singularities
Abstract. We prove an all genera version of the Crepant Resolution Conjecture of Ruan and Bryan-Graber for type A surface singularities. We are based on a method that explicitly computes Hurwitz-Hodge integrals described in an earlier paper and some recent results by Liu-Xu for some intersection numbers on the Deligne-Mumford moduli spaces. We also generalize our results to some three-dimension...
متن کاملOn the Crepant Resolution Conjecture in the Local Case
In this paper we analyze four examples of birational transformations between local Calabi– Yau 3-folds: two crepant resolutions, a crepant partial resolution, and a flop. We study the effect of these transformations on genus-zero Gromov–Witten invariants, proving the Coates–Corti–Iritani– Tseng/Ruan form of the Crepant Resolution Conjecture in each case. Our results suggest that this form of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2012
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-012-0833-x